Speaker adaptive training using shift-MLLR

نویسندگان

  • Jonas Lööf
  • Christian Gollan
  • Hermann Ney
چکیده

In this paper a novel method for speaker adaptive training (SAT), based on Gaussian mean offset adaptation, so called Shift-MLLR, is presented. The method differs from previous SAT methods, where linear transformations of Gaussian means or features are utilized, in that only an offset vector is used for adaptation, but instead the number of regression classes is increased. This is shown to allow an efficient implementation. Furthermore, the use of word posterior confidence measures for Shift-MLLR is investigated, also in combination with the proposed SAT method. The presented methods are integrated into a state of the art speech recognition system, and performance is contrasted with Shift-MLLR without SAT, as well as with MLLR. Large and consistent improvements in word error rate are observed from the new SAT method, as well as from confidence based Shift-MLLR. The combination of the new speaker adaptive training method with confidence based estimation show consistent improvements.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Fast speaker adaptive training for speech recognition

In this paper we describe various fast and convenient implementations of Speaker Adaptive Training (SAT) for use in training when Maximum Likelihood Linear Regression (MLLR) is to be used in test time to adapt Gaussian means. The memory and disk requirements for most of these are similar to those for normal ML training; the computation in all cases is dominated by the need to compute the MLLR t...

متن کامل

Speaker adaptive training applied to continuous mixture density modeling

Speaker Adaptive Training (SAT) has been investigated for mixture density estimation and applied to large vocabulary continuous speech recognition. SAT integrates MLLR adaptation in the HMM training and aims at reducing inter-speaker variability to get enhanced speakerindependent models. Starting from BBN's work on compact models, we derive a one-pass Viterbi formulation of SAT that performs jo...

متن کامل

Experiments in speaker normalisation and adaptation for large vocabulary speech recognition

This paper examines techniques for speaker normalisation and adaptation that are applied in training with the aim of removing some of the variability from the speaker independent models. Two techniques are examined: vocal tract normalisation (VTN) which estimates a single \vocal tract length" parameter for each speaker and then modi es the speech parameterisation accordingly and speaker adaptiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008